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Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup
under simple shear flow

Haowen Xi* and Comer Duncan†

Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403
~Received 24 July 1998!

We present three-dimensional numerical simulations of the classical Taylor experiment on droplet deforma-
tion within a shear flow. We have used the promising lattice Boltzmann method numerical scheme to simulate
single droplet deformation and breakup under simple shear flow. We first compute the deformation of the
droplet, and find excellent agreement with the theoretical prediction. We have used the same method to
simulate the shear and breakup for larger values of the shear rate. We find that the lattice Boltzmann method
used in conjunction with the interface force model of Shan and Chen@Phys. Rev. E47, 1815~1993!; 49, 2941
~1994!# results in an excellent treatment of the entire process from small deformation to breakup into multiple
droplets. Our results could be extended to study the rheology of dispersed droplets and the dynamics of droplet
breakup and coalescence in shear flow.@S1063-651X~99!13603-1#

PACS number~s!: 47.55.Dz, 47.55.Kf, 05.50.1q
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I. INTRODUCTION

The effect of shear flow on droplets of one fluid free
suspended in another immiscible fluid is a problem of lon
standing interest@1–5#. Long ago Taylor@6,7# considered a
droplet of a Newtonian fluid suspended in the shear flow o
second Newtonian fluid. He estimated the largest sta
droplet radius by balancing the surface stresses due to i
facial tension and viscous stress due to shear. Taylor fo
that the deformation of the droplet can be expressed in te
of three dimensionless parameters: the capillary~or Taylor!
number Ca5Rhmġ/b, the viscosity ratiol5hd /hm , and
the density ratiok5rd /rm . Hereb is the interfacial tension
coefficient,ġ is the shear rate, andR is the droplet radius.hd
and hm are the droplet and medium viscosity, respective
andrd andrm are the droplet and medium density, respe
tively. For two fluids of equal viscosity (l51) and equal
density ~neutrally buoyant,k51) under simple shear flow
Taylor obtained a theoretical result forsmalldeformationD,
where

D5~L2B!/~L1B!5
19hd116hm

16hd116hm
5~35/32!Ca. ~1!

HereL andB are the largest and smallest distances from
droplet surface from its center~the ‘‘major’’ and ‘‘minor’’
axes!. Thus, for a spherical droplet,D is equal to zero.

From the numerical simulation point of view, the simul
tion of droplet deformation and breakup problem is very d
ficult. The conventional numerical modeling of a liquid
liquid system, which involves solving hydrodynamic part
differential equations, has seen only limited success@5#. The
equations of motion of flow field must be solved both insi
and outside the droplet, with the appropriate boundary c
dition applied on the interface between the interior and ex
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rior of the droplet. However, the shape of the droplet is n
known a priori, and must be determined as part of the so
tion. Because of these complications, there have not b
many successful three-dimensional numerical studies
droplet deformation and breakup. The case of many dr
under shear flow whereboth breakup and coalescence~re-
sulting from the collisions of droplets! effects are taken into
account is largely unexplored@5#. In this paper, we report the
use of an alternative and promising numerical scheme ca
the lattice Boltzmann method~LBM ! @8–11# to simulate the
deformation of droplets under shear. In recent years th
have been a growing number of successful applications
LBM to a variety of physical systems. The basic idea of t
LBM is to construct simplified kinetic models that incorpo
rate the essential physics of microscopic dynamics, so
the macroscopic averaged properties obey the desired m
roscopic Navier-Stokes equations. One of the great adv
tages of the LBM is that the information about the pha
boundary~e.g., interface boundary between droplets and
exterior medium!, the droplet size and shape, and the flo
field can all automatically arise from the solutions. The LB
scheme has been shown to be particularly successful in m
tiphase flow dynamics@12–14# and flow in systems with
complex boundaries@8,11#. However, there have been on
few quantitative studies reported of three-dimensional mu
phase flow problems using the LBM. In this paper, we w
present a three-dimensional numerical study of droplet de
mation using the LBM with quantitative comparison wi
theoretical results in the small deformation regime. An ea
study @15# of droplet deformation was restricted to two
dimensional space with no quantitative comparison betw
the numerical simulations and the theoretical results
droplet deformation. The comparison between the simu
tions of three-dimensional droplet shear with the theoret
results of Taylor represents an important step in the vali
tion of the applicability of the LBM method to such physic
systems.

The mechanical dispersion of immiscible droplets is
importance both in nature and in many industrial applic
tions @1–3#. The mixing process under shear flow is usua
3022 ©1999 The American Physical Society
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PRE 59 3023LATTICE BOLTZMANN SIMULATIONS OF THREE- . . .
divided into three stages:~i! stretching and deformation o
liquid droplets,~ii ! breakup of these droplets, and~iii ! coa-
lescence of the resulting droplets upon collision. The ba
process of deformation of a liquid droplet, immersed in t
given flow field of a second~immiscible! liquid is governed
by the capillary number, which is the ratio of the deformi
shear stress applied externally and the shape-conservin
terfacial tension. One good example of the dispersion
droplets is the blending of molten polymer systems@16#.
Because nearly all chemically different polymers are imm
cible, the effective mixing of immiscible polymers is a ubi
uitous industrial goal. The usual objective is to produce
fine dispersion of submicron-sized particles of one polym
in a matrix of another polymer, with the goal of producing
composite system with improved physical properties. Th
the rheology of the dispersion of droplets in various sh
flows at low Reynolds numbers is of both practical and fu
damental interest, and has received considerable atten
over the past 60 years, starting with early work by Taylor
1934. For recent references, see Refs.@4,5#.

This paper is organized as follows: In Sec. II we presen
brief discussion of the multicomponent LBM and outline o
numerical techniques. In Sec. III, we present quantitative
merical results for two studies. First, we make a compari
between the simulation of small deformation droplet with t
classical Taylor theory. Second, we report on simulatio
with a larger shear rate in which the initial droplet is d
formed, then sheared to breakup. We conclude with a dis
sion of some of the interesting problems which are ope
up given the utility of the three-dimensional LBM to system
of droplets under various shear flow conditions.

II. NUMERICAL MODEL

In this section, we present a brief description of the LB
for modeling multicomponent immiscible fluids develop
by Shan and Chen~SC! @17,18#. Denote byna

s(x,t) the num-
ber density ofsth particles at spatial pointx and timet for
the fluid (s51 and 2! with velocity ea . Herea50, . . . ,b,
where b is the number of velocity directions on a thre
dimensional lattice~in the D3Q19 lattice model,b518)
@19#. The LBM for the particle distribution functionna

s(x,t)
can be written as

na
s~x1ea ,t11!2na

s~x,t !52
1

ts
@na

s~x,t !2na
s~eq!~x,t !#,

~2!

wherena
s(eq)(x,t) is the local equilibrium distribution func

tion which depends on the microscopic velocityea , the mac-
roscopic densityna , and the velocityu, andts is the relax-
ation time for speciess and controls the rate of approach
equilibrium for that species. The Galilean-invariant thre
dimensional D3Q19 lattice model equilibrium distributio
function can be represented as

na
s~eq!~x,t !5 1

3 ns~x,t !@12 3
2 u•u#,ueau250, ~3!

na
s~eq!~x,t !5 1

18 ns~x,t !@113~ea•u!1 9
2 ~ea•u!22 3

2 u•u#,

ueau251, ~4!
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s~eq!~x,t !5 1

36 ns~x,t !@113~ea•u!1 9
2 ~ea•u!22 3

2 u•u#,

ueau252, ~5!

where the macroscopic densityns(x,t) and velocity for each
fluid components are defined as

ns~x,t !5(
a

na
s~x,t ! ~6!

and

u~x,t !5

(
s

ms(
a

na
sea /ts

(
s

ms(
a

na
s/ts

1
ts

(
a

msna
s~x,t !

dps

dt
, ~7!

wherems is the mass of thesth component. Note that fo
the sth component the macroscopic mass density and
mentum density are defined to bers5msns and rsus

5ms(ana
sea , respectively. The second term in Eq.~7! rep-

resents the interaction between the two fluid components
order to model surface tension forces, SC introduced an
teraction potential V(x,x8)52Gss8(x,x8)cs8(x8)cs(x).
Here cs(x)5F@ns(x)# is a function of densityns(x), and
Gss8(x,x8) is the interaction strength. Assuming on
nearest-neighbor interactions for simplicity, and usi

cs(x)5ns(x) with Ga
ss50 and Ga

ss85” 0 for s5” s8, one
obtains

dps

dt
52ns~x!(

s8
(

a
Ga

ss8ns8~x1ea!ea . ~8!

In a practical numerical study, one often assumes thatGa
ss8

is given by a constantG, and then varies the value ofG to
model the surface tension strength. However, one mus

careful about the treatment ofGa
ss8 , and should use the val

ues that insure the Galilean invariance of the macrosco
equation in three-dimensional space. For the thr
dimensional D3Q19 lattice model we use in the pres
study, after the correct projection from the four-dimension
FCHC lattice@20#, one obtains

Ga
ss85G, ueau251,

Ga
ss85G/2, ueau252,

Ga
ss850 otherwise. ~9!

III. NUMERICAL SIMULATIONS AND DISCUSSION

A. Small deformation limit of droplet shear

We now present our numerical study of the classical T
lor experiment, i.e., the deformation of a single droplet un
simple shear flow. The shear velocity is given by

v5~ ġz,0,0!5~2Uz/Lz,0,0!, ~10!
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3024 PRE 59HAOWEN XI AND COMER DUNCAN
where2Lz/2<z<1Lz/2, andLz is the distance between th
top boundary plane which moves with velocity1U and bot-
tom boundary plane which moves with velocity2U. Taylor
obtained the theoretical prediction given in Eq.~1! for the
dimensionlesssmall deformationD. With l51 and k51,
where Ca defined as above, we have

Ca5
ġRnr

b
5

U

Lz/2

Rnr

b
. ~11!

Heren andr are the kinematic viscosity and the density
the fluid, respectively. In our numerical simulation, we ha
chosen the densitiesr5r15r250.3 with m15m251, and
viscosities n5n15n25(2t21)/6 with t5t15t251.0.
The initial radiusR of the drop was set to 10.0. The syste
size was chosen to beLx3Ly3Lz5128362362. We used
parameter valuesG125G2150.5 and G115G2250.0 for
modeling the surface tension. The actual value of surf
tensionb was determined by placing a single droplet in t
medium in the absence of shear flow, and using the Lap
law dp52b/R, wheredp is the pressure difference insid
and outside the droplet andR is the radius of the droplet
Once we have all the numerical values (R,n,r,b,Lz), the
only free parameter left is the shear velocityU, which we can
vary to determine the Taylor number Ca. The initial con
tion for the simulation was taken to be a single drop
placed in the center of the computational volume with eq
constant density both inside and outside the droplet. The
tial macroscopic velocity fieldu was set to zero everywhere
In order to determine the ‘‘major’’ and ‘‘minor’’ axesL and
B, numerically we follow the standard technique used
classical mechanics for calculating the rotational inertiaI i j .
We first calculate the symmetric matrixAi j defined as

Ai j 5

E E E rxixjdx dy dz

E E E r dx dy dz

, ~12!

where the origin of the coordinates is located at the cente
the initial droplet, andxi ,i 51,2,3 are the Cartesian coord
nates at a point in the computational volume. After determ
ing the eigenvalues of the matrixAi j , we can then determine
the values forL andB. We made a series of runs of the thr
dimensional LBM code for several small deformatio
generating shear flows. For each such run we computed
values ofL and B as indicated above. Figure 1 shows t
comparison between our numerical results and the theore
prediction forD vs Ca. From the figure one can see that
agreement between our numerical simulations with the LB
and the theoretical result is excellent at small Taylor numb
This agreement between our LBM-computed values and
theoretical value for small deformation is clear evidence t
the numerical methods perform well for small Taylor num
ber. This validates the accuracy of the LBM plus SC mo
in this environment.

B. Larger deformation to breakup

Given the successful comparison with the Taylor resul
the small deformation limit, we have confidence that t
e
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LBM plus the SC interface force model does a credible jo
We have performed several simulations at larger shear r
to investigate the ability of the SC model to adequately tra
the deforming interface to and beyond breakup. Here
report the results of using the three-dimensional LBM co
for the breakup. Our computational volume was 128352
331. The value of the shear velocity for this wasU50.5.
The smaller value forLz results in an effectively larger shea
rate for the same value ofU. This change results in a qual
tatively different range of the droplet deformation an
breakup. We emphasize that the same values
G12, G21, G11, and G22 used in the small deformation
limit were used for the breakup simulations. The combin
tion of LBM and the SC model for the interface force b
tween the two components proved to be a robust comb
tion once the initial work was done to determine the b
range for theG12, G21, G11, andG22 parameters.

Figures 2–6 show snapshots of the evolution of the dr
let under shear. The initial spherical droplet was given
radius of 8.0. The progression from deformation to break
is illustrated in the figures via the rendering of the isosurfa
of the droplet in the surrounding volume of the other flu
The figures show just the fluid corresponding to the init

FIG. 1. Plot of deformation vs Taylor number in the small d
formation limit. Also shown is the theoretical result of Taylor.

FIG. 2. Initial droplet of radius 8.0. The legend shows a gr
scale color map of the density of the sheared droplet.
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PRE 59 3025LATTICE BOLTZMANN SIMULATIONS OF THREE- . . .
droplet. A slice was taken in a vertical plane through t
center of the initial droplet and the results rendered o
plane which is shown at the back side of the volume. Si
larly, a second slice was taken along the long axis and
allel to the bottom of the computational volume, and p
jected onto the bottom of the volume’s bounding box. The
data show that there is considerable stretching and
pinching breakup at the ends of the long, deformed, drop
Subsequent to the breakup the shear induces further str
ing of the newly formed droplets. These in turn are even
ally significantly sheared to breakup themselves. Figur
shows the droplets wrapping around at the long ends of
volume due to our use of periodic boundary conditions at
ends in thex direction. The generalization of these simul
tions to treat multiple droplet shear, breakup, and coa
cence is the next step in the simulation of these systems,
is under current investigation.

IV. CONCLUSIONS

In the present paper we have used the LBM along w
the interface model developed by Shan and Chen@17# for
multiphase fluids to study single droplet deformation un
simple shear flow. We have considered a three-dimensi
two-fluid system with equal kinematic viscosities and den
ties. We calculated the deformationD, and found that the

FIG. 3. Deformed droplet at 400 cycles.

FIG. 4. Sheared droplet at 800 cycles.
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numerical results are in excellent agreement with Taylo
theoretical results. The use of equal densities and kinem
viscosities was simply an arbitrary numerical choice. It
interesting to note that the whole range of the ratiohd /hm
from 0 to ` results in (19hd116hm)/(16hd116hm) vary-
ing only from 1.0 to 1.1875. Thus the small deformationD
5(L2B)/(L1B) is almost equal to Ca. The fact that Ta
lor’s prediction has been verified in this special numeri
simulation indicates that the viscous stress field on the dr
let surface has been correctly reproduced. It is also inter
ing to consider the drag force on a slowly moving droplet
a fluid. It is well known that the drag force on a slow
moving solid sphere is well described by the Stokes l
formula. For a fluid droplet the picture is qualitatively diffe
ent. Instead of a rigid boundary condition on the surface
the droplet, the fluid has a stress-free boundary condit
The shape of the droplet may deform, and set up recircu
ing flow inside the droplet. In order to calculate the dr
force on the moving droplet, one needs to know the visc
stress field, as did Taylor for viscous stress due to shear.
have also simulated the effect of larger shear rates, and h
successfully evolved the sheared single droplet to brea
and beyond. Thus this LBM scheme is not limited to sm
deformations, and is of utility for the study of the dynami

FIG. 5. Droplet at 1200 cycles just before pinched breakup a
ends.

FIG. 6. Multiple droplets at 1600 cycles.
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3026 PRE 59HAOWEN XI AND COMER DUNCAN
deformation and breakup of many-droplet systems. In f
the work for computingN droplets scales linearly withN, in
contrast to the conventional computational fluid dynam
for which the computational work scalesN2. Thus the LBM
approach could provide the capability to study the rheolo
of dispersed droplets and the dynamics of many-droplet
tems. Our results indicate that the LBM scheme is fully c
pable of predicting the merger as well as breakup@21# of
many droplets systems. Such studies are currently un
way. The results reported in this paper demonstrate that
LBM scheme which we have utilized could be a useful to
for a wide range of industrial problems, including polym
molding processes and the rheology of many-droplet s
tems.

One aspect of the present method which needs fur
study centers around the slightly nonrobust character of
interface model. That is, given a choice of the density ra
of the two fluids we have found the choices of t
G12, G21, G11, and G22 parameters, characterizing th
strength of the interfacial forces which give a stable evo
tion, to reside in a somewhat narrow range. Inside the ra
the evolution is stable, and produces a qualitatively corr
tracking of the breakup process. Outside the range, the s
lations eventually fail by producing negativef i for one or
both fluids, thus inducing the halting of the computations
would be useful to get a handle on how to extend the ra
i

,

t,
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of robustness of the simulations, so that a wide range of b
the density ratio and theG values can be used to increase t
dynamic range of systems to which the methods can be
plied. We are currently exploring the extent to which t
finite difference method can be used, with the extra freed
one gains by unlocking the velocity space from the posit
space lattice and requiring that the Courant limit be satisfi
When used in conjunction with the SC interface model, t
method will be more stable and perhaps allow a wider ra
of density ratios andG values. We expect to report on ou
investigations into these matters in a future publication.
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