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Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup
under simple shear flow
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We present three-dimensional numerical simulations of the classical Taylor experiment on droplet deforma-
tion within a shear flow. We have used the promising lattice Boltzmann method numerical scheme to simulate
single droplet deformation and breakup under simple shear flow. We first compute the deformation of the
droplet, and find excellent agreement with the theoretical prediction. We have used the same method to
simulate the shear and breakup for larger values of the shear rate. We find that the lattice Boltzmann method
used in conjunction with the interface force model of Shan and CRbys. Rev. E47, 1815(1993; 49, 2941
(1994] results in an excellent treatment of the entire process from small deformation to breakup into multiple
droplets. Our results could be extended to study the rheology of dispersed droplets and the dynamics of droplet
breakup and coalescence in shear flg81063-651X%99)13603-1

PACS numbg(s): 47.55.Dz, 47.55.Kf, 05.58:.q

[. INTRODUCTION rior of the droplet. However, the shape of the droplet is not
known a priori, and must be determined as part of the solu-
The effect of shear flow on droplets of one fluid freely tion. Because of these complications, there have not been
suspended in another immiscible fluid is a problem of long-many successful three-dimensional numerical studies of
standing interestl-5]. Long ago Taylof6,7] considered a droplet deformation and breakup. The case of many drops
droplet of a Newtonian fluid suspended in the shear flow of aunder shear flow wherboth breakup and coalescenées-
second Newtonian fluid. He estimated the largest stablsulting from the collisions of dropleteffects are taken into
droplet radius by balancing the surface stresses due to inteaccount is largely unexplord8]. In this paper, we report the
facial tension and viscous stress due to shear. Taylor foundse of an alternative and promising numerical scheme called
that the deformation of the droplet can be expressed in ternthe lattice Boltzmann method.BM) [8—11] to simulate the
of three dimensionless parameters: the capillaryTaylon  deformation of droplets under shear. In recent years there

number Ca R7,,y/B, the viscosity ratioh= 74/, and have been a growing number of successful applications of
the density ratioc=p4/p,. Hereg is the interfacial tension LBM to a variety of physical systems. The basic idea of the
coefficient,y is the shear rate, arRlis the droplet radiusyg LBM is to construct simplified kinetic models that incorpo-

and .. are the droplet and medium viscositv. respectivel rate the essential physics of microscopic dynamics, so that
Tm P Y, b Yithe macroscopic averaged properties obey the desired mac-

ZCSIC d sg:j g/:/noafrliiéhseo?rngéla\?igcrcr)];?ylg(rz f)e gsr]';y’erqej;ec'roscopic Navier-Stokes equations. One of the great advan-
densi.ty(neutrally buoyantx=1) under simple shear flow tages of the LBM is that the information about the phase
Taylor obtained a theoretical result femall deformationD ’ boundary(e.g_., interface bound.ary between droplets and the
where ' exterior mediuny, the droplet size and shape, and the flow
field can all automatically arise from the solutions. The LBM
scheme has been shown to be particularly successful in mul-
1977d+1677m:(35/32)Ca (1)  tiphase flow dynamic§12-14 and flow in systems with
1674+ 167, ' complex boundarief8,11]. However, there have been only
few quantitative studies reported of three-dimensional multi-
HereL andB are the largest and smallest distances from thgphase flow problems using the LBM. In this paper, we will
droplet surface from its centdthe “major” and “minor” present a three-dimensional numerical study of droplet defor-
axes. Thus, for a spherical dropleR is equal to zero. mation using the LBM with quantitative comparison with
From the numerical simulation point of view, the simula- theoretical results in the small deformation regime. An early
tion of droplet deformation and breakup problem is very dif-study [15] of droplet deformation was restricted to two-
ficult. The conventional numerical modeling of a liquid- dimensional space with no quantitative comparison between
liquid system, which involves solving hydrodynamic partial the numerical simulations and the theoretical results for
differential equations, has seen only limited suc¢&$sThe  droplet deformation. The comparison between the simula-
equations of motion of flow field must be solved both insidetions of three-dimensional droplet shear with the theoretical
and outside the droplet, with the appropriate boundary conresults of Taylor represents an important step in the valida-
dition applied on the interface between the interior and extetion of the applicability of the LBM method to such physical

D=(L-B)/(L+B)=

systems.
The mechanical dispersion of immiscible droplets is of
*Electronic address: haowen@bgnet.bgsu.edu importance both in nature and in many industrial applica-
TElectronic address: gcd@chandra.bgsu.edu tions[1-3]. The mixing process under shear flow is usually
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divided into three stagesi) stretching and deformation of nZ®(x,t)=£n’(x,t)[1+3(e,-u) + 3(e,-u)®— 2u-ul,
liquid droplets,(ii) breakup of these droplets, afid) coa-

lescence of the resulting droplets upon collision. The basic le)2=2, (5)
process of deformation of a liquid droplet, immersed in the

given flow field of a secondmmiscible liquid is governed  \\here the macroscopic densitfi(x,t) and velocity for each
by the capillary number, which is the ratio of the deformingy,ig componenio are defined as

shear stress applied externally and the shape-conserving in-

terfacial tension. One good example of the dispersion of

droplets is the blending of molten polymer systefis]. n7(x,t)= > ng(xt) (6)
Because nearly all chemically different polymers are immis- a

cible, the effective mixing of immiscible polymers is a ubig-

uitous industrial goal. The usual objective is to produce aand
fine dispersion of submicron-sized particles of one polymer

in a matrix of another polymer, with the goal of producing a > m?> nle 7" . .
composite system with improved physical properties. Thus u(x.t)= [ a N T dl )
the rheology of the dispersion of droplets in various shear ' dt’
flows at low Reynolds numbers is of both practical and fun- > m"é ng/ 77 ; m7ng(x,t)
damental interest, and has received considerable attention 7

over the past 60 years, starting with early work by Taylor in\,harem® is the mass of therth component. Note that for

1934'. For recent refEr.ences, see RpfsS]. the oth component the macroscopic mass density and mo-
This paper is organized as follows: In Sec. Il we present 3mentum density are defined to he,=m’n” and p,u
brief discussion of the multicomponent LBM and outline our _ o n“e,, respectively. The second term in Ea) ;’eg_
a'lavas .

num_encal techniques. In S?C' III,_we present quantitative NUresents the interaction between the two fluid components. In
merical results for two studies. First, we make a compariso

between the simulation of small deformation droplet with the'?)rder to model surface tension forces, SC introduced an in-

classical Taylor theory. Second, we report on simulationdéraction potential V(x,x’) = =G (x,x")¢” (x')*(x).
with a larger shear rate in which the initial droplet is de- Here #“(x)=F[n“(x)] is a function of density1?(x), and
formed, then sheared to breakup. We conclude with a discu$3°” (x,x’) is the interaction strength. Assuming only
sion of some of the interesting problems which are openedtearest-neighbor interactions for simplicity, and using
up given the utility of the three-dimensional LBM to systems y7(x) =n?(x) with GJ”=0 and G;""io for o+ o', one

of droplets under various shear flow conditions. obtains
IIl. NUMERICAL MODEL dp” oo o
- _ - G- X X G (x+e)es. (8
In this section, we present a brief description of the LBM o 8

for modeling multicomponent immiscible fluids developed )
by Shan and Che(8C) [17,18. Denote bynZ(x,t) the num-  In a practical numerical study, one often assumes @zt
ber density ofoth particles at spatial point and timet for IS given by a constan®, and then varies the value & to
the fluid (c=1 and 2 with velocity e,. Herea=0, ... b, model the surface tension strength. However, one must be
where b is the number of velocity directions on a three- careful about the treatment &, and should use the val-
dimensional lattice(in the D3Q19 lattice modelp=18) ues that insure the Galilean invariance of the macroscopic
[19]. The LBM for the particle distribution function(x,t) equation in three-dimensional space. For the three-
can be written as dimensional D3Q19 lattice model we use in the present
study, after the correct projection from the four-dimensional
1 FCHC lattice[20], one obtains
ng(x+e,,t+1)—nJ(x,t)= — —[ng(x,t) —ngV(x,1)],
T

) Gy =G, |el*=1,

Whereng(eq)(x,t) is the local equilibrium distribution func- G =G/2 le2=2
. . . . . a 1 1
tion which depends on the microscopic veloaty, the mac-
roscopic densityr,, and the velocityu, and 77 is the relax-
ation time for species and controls the rate of approach to
equilibrium for that species. The Galilean-invariant three-

dimensional D3Q19 lattice model equilibrium distribution 1. NUMERICAL SIMULATIONS AND DISCUSSION
function can be represented as

Gg"' =0 otherwise. (9)

A. Small deformation limit of droplet shear

N7 (x,t)=3n"(x,H)[1-3u-u],|e*=0, ) We now present our numerical study of the classical Tay-
lor experiment, i.e., the deformation of a single droplet under
nZed(x,t)=£n7(x,0)[ 1+ 3(ey-u) + 3 (e u)2—3u-u], simple shear flow. The shear velocity is given by

le)2=1, (4) v=(y2,0,00=(2Uz/L,,0,0), (10
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where—L,/2<z<+L,/2, andL, is the distance between the "

top boundary plane which moves with velocityU and bot- DA G il
tom boundary plane which moves with velociyU. Taylor o2r ]
obtained the theoretical prediction given in Ed) for the

dimensionlessmall deformationD. With A=1 and k=1, Al 1

where Ca defined as above, we have

YyRv U Ry o
ca- - — TP (1) .
B LJ/2 B

Herev andp are the kinematic viscosity and the density of  oosf .
the fluid, respectively. In our nhumerical simulation, we have
chosen the densitigs=p;=p,=0.3 with m'=m?=1, and 00zl ]
viscosities v=v;=v,=(27—1)/6 with 7=7,=7,=1.0.
The initial radiusR of the drop was set to 10.0. The system e
size was chosen to e, XL, XL,=128xX62X62. We used ca

parameter valuesG;,=G,;=0.5 and G;;=G,,=0.0 for
modeling the surface tension. The actual value of surfac:feOlr

tensiongB was determined by placing a single droplet in the

lmedium_in the abﬁence of shhear flow, and !;fsing the Laplacgg), plus the SC interface force model does a credible job.
aw 6p=2p/R, wheredp is the pressure difference inside \yq haye performed several simulations at larger shear rates
and outside the droplet arid is the radius of the droplet. y jnyestigate the ability of the SC model to adequately track

Once we have all the ljumerical vaIueE,_(/,p,,_B,LZ), the  ihe deforming interface to and beyond breakup. Here we
only free parameter left is the shear veloditywhich we can o001t the results of using the three-dimensional LBM code

vary to determine the Taylor number Ca. The initial condi-¢,; he breakup. Our computational volume was X2

tion for the simulation was taken to be a single droplety 31 Tha value of the shear velocity for this weis=0.5.

placed in the center of the computational volume with eql.’a.ll'he smaller value fok, results in an effectively larger shear

constant density both inside and outside the droplet. The ini

tial macroscopic velocity field was set to zero everywhere. yoiyely gifferent range of the droplet deformation and
In order to determine the “major” and “minor” axek and breakup. We emphasize that the same values of

B, nqmerically we follow the s.tandard techniqug us_ed 'nGlz, Gy, Gi1, and G,, used in the small deformation

class_lcal mechanics for calcula_\tlng the rotat_lonal Inefia  |imit were used for the breakup simulations. The combina-

We first calculate the symmetric matrf; defined as tion of LBM and the SC model for the interface force be-
tween the two components proved to be a robust combina-

0.06 ¢ B

FIG. 1. Plot of deformation vs Taylor number in the small de-
mation limit. Also shown is the theoretical result of Taylor.

rate for the same value &f. This change results in a quali-

j j fPXindX dy dz tion once the initial work was done to determine the best
A= (12) range for theG,,, G,;, G;1, andG,, parameters.
! ’ Figures 2—6 show snapshots of the evolution of the drop-
f J fdedde let under shear. The initial spherical droplet was given a

radius of 8.0. The progression from deformation to breakup
where the origin of the coordinates is located at the center o illustrated in the figures via the rendering of the isosurface
the initial droplet, andk; ,i=1,2,3 are the Cartesian coordi- of the droplet in the surrounding volume of the other fluid.
nates at a point in the computational volume. After determin-The figures show just the fluid corresponding to the initial
ing the eigenvalues of the matrk; , we can then determine
the values fol andB. We made a series of runs of the three
dimensional LBM code for several small deformation-
generating shear flows. For each such run we computed the
values ofL and B as indicated above. Figure 1 shows the
comparison between our numerical results and the theoretica
prediction forD vs Ca. From the figure one can see that the
agreement between our numerical simulations with the LBM
and the theoretical result is excellent at small Taylor number.
This agreement between our LBM-computed values and the
theoretical value for small deformation is clear evidence that
the numerical methods perform well for small Taylor num-
ber. This validates the accuracy of the LBM plus SC model
in this environment.

B. Larger deformation to breakup

Given the successful comparison with the Taylor result in  FIG. 2. Initial droplet of radius 8.0. The legend shows a grey
the small deformation limit, we have confidence that thescale color map of the density of the sheared droplet.
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FIG. 3. Deformed droplet at 400 cycles. FIG. 5. Droplet at 1200 cycles just before pinched breakup at its
ends.

droplet. A slice was taken in a vertical plane through the

center of the initial droplet and the results rendered on &umerical results are in excellent agreement with Taylor's
plane which is shown at the back side of the volume. Simiyhegretical results. The use of equal densities and kinematic
larly, a second slice was taken along the long axis and pakjscosities was simply an arbitrary numerical choice. It is
allel to the bottom of the computational volume, and Pro-interesting to note that the whole range of the rafig/ 7,
jected onto the bottom of the volume’s bounding box. Thesg,om 0 to « results in (1974 + 167,)/ (1674+ 167,,) vary-

data show that there is considerable stretching and thelrﬁg only from 1.0 to 1.1875. Thus the small deformation
pinching breakup at the ends of the Iong, deformed, droplet:(l__l_;;)/(l_Jr B) is almost equal to Ca. The fact that Tay-
Subsequent to the breakup the shear induces further stretgfips hrediction has been verified in this special numerical
ing of the newly formed droplets. These in turn are eventuximation indicates that the viscous stress field on the drop-
ally significantly sheared to breakup themselves. Figure . g rface has been correctly reproduced. It is also interest-
shows the droplets wrapping ar_ound at the Iong_e_nds of thﬁg to consider the drag force on a slowly moving droplet in
volume due to our use of periodic boundary conditions at the, fid. It is well known that the drag force on a slowly
ends in thex direction. The generalization of these simula- moving solid sphere is well described by the Stokes law

tions to treat multiple droplet shear, breakup, and coalesgmya. For a fluid droplet the picture is qualitatively differ-
cence is the next step in the simulation of these systems, angh¢ nstead of a rigid boundary condition on the surface of

is under current investigation. the droplet, the fluid has a stress-free boundary condition.
The shape of the droplet may deform, and set up recirculat-
IV. CONCLUSIONS ing flow inside the droplet. In order to calculate the drag

hforce on the moving droplet, one needs to know the viscous
the interface model developed by Shan and CFf for stress field, as did Taylor for viscous stress due to shear. We
Ihave also simulated the effect of larger shear rates, and have

multiphase fluids to study single droplet deformation unde ;

simple shear flow. We have considered a three—dimensionél“cces’sfu"y evolved'the sheared sm.gle drqpl_et to breakup
two-fluid system with equal kinematic viscosities and densi-2nd beyo_nd. Thus _th's LEM scheme is not limited to S"?a”
ties. We calculated the deformatidd, and found that the deformations, and is of utility for the study of the dynamics

In the present paper we have used the LBM along wit

FIG. 4. Sheared droplet at 800 cycles. FIG. 6. Multiple droplets at 1600 cycles.
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deformation and breakup of many-droplet systems. In factof robustness of the simulations, so that a wide range of both
the work for computingN droplets scales linearly witN, in  the density ratio and thé values can be used to increase the
contrast to the conventional computational fluid dynamicsdynamic range of systems to which the methods can be ap-
for which the computational work scalé&. Thus the LBM  plied. We are currently exploring the extent to which the
approach could provide the capability to study the rheologyinite difference method can be used, with the extra freedom
of dispersed droplets and the dynamics of many-droplet syssne gains by unlocking the velocity space from the position
tems. Our results indicate that the LBM scheme is fully ca-space lattice and requiring that the Courant limit be satisfied.
pable of predicting the merger as well as breakBp] of  \When used in conjunction with the SC interface model, this
many droplets systems. Such studies are currently underethod will be more stable and perhaps allow a wider range
way. The results reported in this paper demonstrate that thef density ratios ands values. We expect to report on our
LBM scheme which we have utilized could be a useful toolinvestigations into these matters in a future publication.
for a wide range of industrial problems, including polymer
molding processes and the rheology of many-droplet sys-
tems.
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